SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Expe2000;00:1-6 Prepared usingpeauth.cls [Version: 2002/09/23 v2.2]

A compiler for parsing schemata Bz

C. Gbmez-RodigueZ*, J. Vilares*, M. A. Alonso'*f

! Depto. de Computaon, Facultade de Inforatica, Universidade da Cofta. Campus de Elfig, s/n,
15071 A Cortia, SPAIN.

SUMMARY

We present a compiler which can be used to automatically obtain effici¢ Java implementations of parsing
algorithms from formal specifications expressed as parsing scheata. The system performs an analysis of
the inference rules in the input schemata in order to determine the bst data structures and indexes to use,
and ensure that the generated implementations are efficient. Theystem described is general enough to
be able to handle all kinds of schemata for different grammar formdisms, such as context-free grammars
and tree-adjoining grammars, and it provides an extensibility mechaism allowing the user to define custom
notational elements. This compiler has proven very useful for anlgizing, prototyping and comparing natural
language parsers in real domains, as can be seen in the empirical emples provided at the end of the
article. Copyright (© 2000 John Wiley & Sons, Ltd.

KEY WORDS. Parsing; declarative programming; natural language procegsinging schemata.

NOTICE: this is a preprint of an article accepted for puliima in Software: Practice
& Experience Copyright © 2008 John Wiley & Sons, Ltd. Changes resulting from the
publishing process, such as editing, corrections, stractdormatting, and other quality
control mechanisms may not be reflected in this document. Ainitlee version was
subsequently published in Software: Practice & Experiem2®l: 10.1002/spe.904, available at
http://ww3.interscience.w | ey.conljournal/1752/ hone

*Correspondence to: Depto. de ComputaciFacultade de Inforatica, Universidade da Cdia. Campus de Elfig, s/n, 15071

A Coruia, SPAIN. Email{cgomezi jvilares| alonsg @udc.es

Contract/grant sponsor: MEC and FEDER; contract/grant rumitiN2004-07246-C03, HUM2007-66607-C04
Contract/grant sponsor: Xunta de Galicia; contract/granmber: PGIDITO7SINO05206PR, PGIDITO5PXIC-10501PN,
PGIDITO5PXIC30501PN

Contract/grant sponsor: Rede Galega de Procesamento dzaking Recuperamn de Informadin

Copyright(©) 2000 John Wiley & Sons, Ltd.

http://www3.interscience.wiley.com/journal/1752/home

2 C. GOMEZ-RODRGUEZ, J. VILARES, M.A. ALONSO SP E
&

1. INTRODUCTION

The process oparsing or analyzing a sequence of tokens to obtain its internatgire, is a highly
relevant step in many software systems. Compilers needse gaurce code, written in a programming
language, in order to convert it into instructions execletdly a machine. Systems that perform natural
language processing tasks (such as machine translatformation extraction or text summarization)
apply parsing to sentences in human language.

Natural language parsers have to cope withbiguity many sentences in human languages have
more than one viable interpretation, corresponding to ntioa@ one parse tree. On the other hand,
grammars describing programming languages are genegslgnkd to beinambiguousso that every
program has at most one valid interpretation. Programnainguage parsers usually take advantage of
this fact and are more efficient, although less general, tiase used for natural language.

In recent decades, various parsing algorithms have beeriaged. Although all of them share the
common goal of generating a hierarchical description ofitipeit (often by means of grammar a
set of rules describing the language), the approaches osattlin this result vary greatly between
algorithms, so that different parsing algorithms are beged to different situations. In particular, if
we focus only on natural language parsers we find a wide yaokalgorithms, and the choice of
the best one for a particular application will depend heaoii the characteristics of the grammar and
sentences it is to work with2B, 7].

The parsing schemata formalism, introduced by Sik&&],[provides a formal way to capture
the essential features of a parser while abstracting imgh¢ation details. The parsing schemata
framework is based on the idea of viewing parsing as a deatuptiocess. Parsing schemata are highly
declarative descriptions of parsers, as they spewifstto do (a set of operations to be performed on
intermediate results) but ndow to do it (the order in which to execute the operations, or thed
structures used to store the results).

As an example, one of the most widely used parsing algorittansatural language processing
is Earley’s algorithm 10]. The original paper defines the parser in an algorithmibitag as in the
pseudocode in figuré. A parsing schema for this parser, appearing8,[is shown in figure2.
Regardless of the concrete semantics of the schema (whittevaddressed later), it is obvious
at a glance that the schema provides a much simpler and nraighstorward description than the
algorithm, even in the form of high-level pseudocode.

A parsing schema can be seen as a forsgcificationof a parser’'s behavior, which can be
implemented in several ways. Almost all known parsing atbors may be described by a parsing
schema (nonconstructive parsers, such as those based mal networks, are exceptions). This
generality, along with their simplicity and high abstractilevel, makes parsing schemata a useful
tool for defining, analyzing and comparing parsers. Howevben we want to actually test a parser by
running it on a computer and checking its results, we neeghjpdament it in a programming language,
so we have to abandon the high level of abstraction and wawytamplementation details that were
irrelevant at the schema level.

The system presented in this article automates this tas&oimpiling parsing schemata to efficient
Java language implementations of the corresponding &hgosi The input to the compiler is a
declarative specification of a parser in the form of a parsicigema, and the output is an efficient
implementation of the parser. This enables us to save a @b, since we can test parsers and check
their results and performance just by writing their speatfan, without having to implement them.

Copyright(© 2000 John Wiley & Sons, Ltd. Softw. Pract. Expe2000;00:1-6
Prepared usingpeauth.cls

SP E A COMPILER FOR PARSING SCHEMATA 3
s

S =array [0..n] of state sets;
for i=0...n{S[i]]=0; } /initialize the n+1 sets tof)
for each ruleS — « € P /linitialize S[0]

S[0] = S[0] U{(S — a,0,0)};

for i=0...n {/Iprocess state sets
process the members ofiBjn order, executing each of these operations on
each state(A — a, 7, f) until no more of them can be applied:
1) Predictor :
X =j + 1th symbol inc;
if X existsand is a nonterminal
for each production of the for’X — gin P
Sfi] = Sl U {(X — 5,0,i)};
2) Completer:
if X doesnotexist /If +1 > |a])
for each state(B — 3,1,g) in S[f] {
Y =1+ 1th symbol ing;
if YexistshAY =A
Skl =S[]U{(B—B,1+1,9)}

3) Scanner:
if X existsand is a terminal
if X= Ai41
Sli+1]=S[i+1JU{(A— a,5+1,)}

/I check whether string belongs to language
if S[r] contains a state of the forft — ~,|v|, 0) return true ;
else return false ;

Figure 1. Pseudocode for Earley’s parsing algoritij for a string of lengtim. The algorithm works on states of

the form(A — «, j, k), whereA — « is the grammar rule currently being used for recognitois, the number

of already recognized symbols in its right-hand side, &nd the initial position of the part of the input string
which has been recognized (the final position is given by the index otdle setS[;] holding the state).

This can be useful both for designing new algorithms anddsting existing ones to determine which
is the best for a particular application. The source codebaématies of the system can be downloaded
fromht t p: / / www. gr upocol e. or g/ sof t war e/ COVPAS/ .

In the next section, we provide a brief introduction to thespgy schemata formalism, limited only
to the core concepts. This allows us to explain our systewes tp more detail, and discuss related
work directed towards similar goals. We then proceed toamgiow the system is implemented, with
sections discussing the architecture of the generated toeleeading of schemata and the generation
process, including the generation of indexes. Finally, Wwewssome examples of its use including
performance measurements with well-known natural langgggmmars.

Copyright(© 2000 John Wiley & Sons, Ltd. Softw. Pract. Expe2000;00:1-6
Prepared usingpeauth.cls

http://www.grupocole.org/software/COMPAS/

4 C. GOMEZ-RODRGUEZ, J. VILARES, M.A. ALONSO SP E
&

Item set{[4A — «.0,i,j] | A—aB € PAO<i<j}
Initial items (hypotheses)[a;,i — 1,4 | 0 < i < n}

Deduction steps:

INITTER: ———— S —~ac P [A — a.af,i, j] la,j,7 + 1]
SCANNER:
[—.0,0,0] A= aaf,ij+]
[A — a.BB,i,] 4~ a.Bf,i j]
PREDICTOR: B A B—~eP COMPLETER [B — 7., 5, k]

Final items:{[S — v.,0,n]}

Figure 2. A parsing schema specifying Earley’s parsing algorithm.

2. PARSING SCHEMATA
2.1. Languages and grammars

A languageis a set of sequences (strings) of symbols from a finite skiccahalphabet

A grammaris a precise definition of a language by means of a set of r@es of the most
widely used types of grammar is context-free grammarsoAtext-free grammais a 4-tupleG =
(N, %, P,S) where:

e Y is an alphabet of symbols calléerminal symbolswhich will be the components of the strings
in the language associated with

e N is an alphabet of auxiliary symbols calladnterminal symboJsvhich will not appear in the
strings of the language,

e S € N is a special nonterminal symbol called tihéial symbolor axiomof G,

e P C N x (XUN)*is aset ofproduction rulesof the formA — «, whereA is a nonterminal
symbol andx is a string that may contain both terminal and nonterminaitsyls.

From now on, we will follow the usual conventions by which temminal symbols are represented
by uppercase lettersi(B . . .), terminals by lowercase letterg, . ..) and strings of symbols (both
terminals and nonterminals) by Greek lettexs(. . .).

The language associated with a gramrGar= (N, X, P, S), denotedL(G), is the set of strings
of terminal symbols in: that can be obtained by starting with the initial symioand applying a
sequence of productions ia. A production of the formA — « can be applied to any string containing
the nonterminal, and is applied by changing one appearancé of the string tax. We write 3 =
to denote that we can obtain the strindpy applying a production to the string

Copyright(© 2000 John Wiley & Sons, Ltd. Softw. Pract. Expe2000;00:1-6
Prepared usingpeauth.cls

SP E A COMPILER FOR PARSING SCHEMATA 5
s

(a) (b) S (©) S
RN TN
NP VP NP V|P
/ | |\NP L v*w
/N T I AT
Det N PP Det N Prep NP
Det N % / \ / \
| | | Prep NP Det N
the dog barks /
Tl
John saw a man with a telescope John saw a man with a telescope

Figure 3. (a) Parse tree for a simple sentence. (b) and (c): Twoaiterparse trees for an ambiguous sentence.

Example:Suppose that we have a context-free gram@ar (N, X, P, S) defined by the following:

e ¥ = {thedogbarks
e N={S,NP,VP,N,V, Det}
e P={S — NP VP,NP — DetN, VP — V, Det —the N —dog V —barks

This is a typical example of a fragment of a context-free greanused for parsing a natural
language, in this case English. Of course, this is an extgesieplified “toy” grammar whose
associated languagg(G) contains a single sentence (“the dog barks”); nevertheliss larger
grammars used in real-life applications often have the sameture: nonterminal symbols correspond
to syntactic structures — such as noun phrases (NP) or vedseh (VP) — and production rules
express the valid ways in which these structures can conibiogarger ones. Terminal symbols can
denote concrete words, as in this example, or part-of-$pgs (such as N or Det). The latter option is
common when a parser is used as one of the steps in a natugablge processing pipeline, receiving
its input from apart-of-speech taggenodule which maps the words in input sentences to these tags.

We can check that the sentence “the dog barks” is in fadi(i¥) by obtaining it as a result of
applying a sequence of productions to the initial symfohs explained before:

S = NPVP = DetN VP = DetNV =the NV =the dogV =-the dog barks.

If we represent the derivations we have just made as a tresrgveach application of a rulé — «
is represented by adding nodes labelled with the symbalsaa children of the nodd, we obtain a
parse tregfor the sentence, which is shown in figusa.

The process of determining whether a given string . . w,, belongs to the language defined by
a grammarG by finding a sequence of derivations for it (or ensuring themen exists) is called
recognition The process of finding all the possible parse trees for thegsb, . . . w,, is calledparsing
Note that, in more complex grammars than this, there may beraledifferent valid parse trees for
a single sentence. For example, in a larger natural langgesgemar, the parsing of the sentence
“John saw a man with a telescope” would result in two différieaes (shown in figur&b and3c),
the former corresponding to the interpretation “a man hgrelescope was seen by John”, and the
latter corresponding to “John used a telescope to see a rmatliis case we say that the sentence is
ambiguousand parsing it correctly implies finding the parse treesf@ry possible interpretation.

Copyright(© 2000 John Wiley & Sons, Ltd. Softw. Pract. Expe2000;00:1-6
Prepared usingpeauth.cls

6 C. GOMEZ-RODRGUEZ, J. VILARES, M.A. ALONSO SP E
&

A
A%
Q... Oy 1. Po

VAR

a a

il G

Figure 4. Form of the trees associated to the Earley jtém- «.3, 1, j].

2.2. Parsing schemata: an example

Parsing schemata, introduced 28], provide a formal, simple and uniform way to describe, gral
and compare different parsing algorithms.

The notion of a parsing schema comes from considering ppi@ina deduction process which
generates intermediate results caliieiins An initial set of items is directly obtained from the input
sentence, and the parsing process consists of the appticdtinference rulesdeduction stegswvhich
produce new items from existing ones. Each item containe@emf information about the sentence’s
structure, and a successful parsing process will produtEast on€inal itemcontaining a full parse
tree for the sentence or guaranteeing its existence.

We can understand how parsing schemata work by studyingetimargtics of the Earley schema
shown in figure2 (for a more formal explanation, se2d]).

Items in the Earley parser are tuples of the fgrin— «.3, 4, j], whereA — .3 is a grammar rule
with a special marker (dot) added at some position in itstfigind side, and, j are integer numbers
denoting positions in the input string. The meaning of suctitem can be interpreted as follows:
“There exists a valid parse tree with root labellédwhere the direct children of are labelled with
the symbols in the string3, the leaf nodes of the subtrees rooted at the nodes labelfedn the
substringa;+1 - .. a; of the input, and the nodes labellgbare leaves”. Such a tree can be seen in
figure 4. Note that this item format and semantics is linked to thedown, left-to-right strategy that
the Earley parser uses to find parse trees, so schemataféedifparsers will use different kinds of
items.

The algorithm will produce a valid parse for the input sengeifian item of the formiS — «.,0, n]
is generated: according to the aforesaid interpretatisfibal itemguarantees the existence of a parse
tree with rootS whose leaves are labelled . . . a,,, that is, a complete parse tree for the sentence.

A deduction ste;ﬁ“'éﬂ ® allows us to infer the item specified by its consequgefrom those in
its antecedents; ... n,,. Side conditiong®) specify the valid values for the variables appearing in
the antecedents and consequent, and may refer to gramrearasiin this example or specify other
constraints that must be verified in order to infer the coneat

In this particular case, thaitter andPredictorsteps are used to initialize the analysis by generating
items with the dot in the first position of their associateddurction’s right-hand side. These items
represent the application of a production without as yetritarecognized any input symbols. As we
have seen, the dot in productions marks the region of thgt4thand side which has been recognized,
and theScannelandCompletersteps allow us to enlarge this region by shifting the dot éoripht. The

Copyright(© 2000 John Wiley & Sons, Ltd. Softw. Pract. Expe2000;00:1-6
Prepared usingpeauth.cls

SP E A COMPILER FOR PARSING SCHEMATA 7
s

Scannestep reads and recognizes a single terminal symbol fronmghe,iwhileCompleterecognizes
a nonterminal symbol and joins two partial parse trees ingger one.

If we now look at Earley’s algorithm as described in figdrewe can see that it is nothing but a
particular implementation of this schema. The deductiomrftem[A — «.f,1,j] in the schema
is implemented by adding a statd — «f, |«|,) to the setS[j], and thePredictor, Completer
andScannemperations in the code correspond to the deduction stepe ischema. The loop and the
structure used to hold the state sets impose a particular ondhe execution of these operations, which
guarantees that the state — ~, |y|, 0) will be generated if the input is a valid sentence according t
the grammar.

3. SYSTEM OVERVIEW
3.1. Motivation for our system

Parsing schemata are located at a higher abstraction lrektigorithms. As we have just seen in the
example, a schemata specifies a set of steps that must beezkaod a set of intermediate results that
must be obtained when parsing sentences, but it makes mo atzut the order in which to execute
the steps or the data structures to use for storing the sesult

Their abstraction of low-level details makes parsing scit@nvery useful, allowing us to define
parsers in a simple and straightforward way. Comparingguay®r considering aspects such as their
correctness and completeness or their computational exityplalso becomes easier if we think in
terms of schemata. However, when we want to test a parseadtige by running it on a computer, we
need to implement it in a programming language, so we havieandon the high abstraction level and
worry about implementation details that were irrelevarthatschema level.

The technique presented in this paper automates this tgstqrbpiling parsing schemata to Java
language implementations of their corresponding pargérs.input to the compiler is a simple and
declarative representation of a parsing schema, whichaistipally equal to the formal notation that
we used previously. For example, a valid schema file destyithie Earley parser will be:

@oal [S->alpha. , 0, length]

@tep Earleylnitter

@t ep EarleyScanner
[A->alpha . abeta, i , |]
[a,], j+1]

[A->alpha a. beta, i , j+1]

@tep Earl eyConpl eter
[A->alpha . Bbeta, i, j]
[B->gamma . , j , k]

Copyright(© 2000 John Wiley & Sons, Ltd. Softw. Pract. Expe2000;00:1-6
Prepared usingpeauth.cls

8 C. GOMEZ-RODRGUEZ, J. VILARES, M.A. ALONSO SP E
&

@tep EarleyPredictor
[A->alpha . Bbeta, i, j]

Note that while an implementation of the Earley parser inagpamming language would probably
take several hundred lines of code, the parsing schemadebysaur system are compact, declarative,
highly readable and easy to understand and modify.

3.2. Goals
Three main design goals have been taken into account dimingdevelopment of our system:

e Declarativity: The input format for representing schemata to be compiledunysystem should
be highly declarative, and similar to the formal notatioedifo represent schemata. The system
should take care of all the operations needed to transfoisrfahmal, abstract notation into a
functional implementation of the corresponding parsers Bllows the parser designer to focus
on the semantics of the schema while abstracting from aniemmgntation detail.

e Generality: The system should be able to handle all kinds of parsing sateefor context-
free grammars and other formalisms. Note that this requérens not trivial, since the formal
notation for parsing schemata is open, so that any matheshatject could potentially appear
in a schema.

o Efficiency:Implementations generated by the system should be efficdfrdourse, we cannot
expect the generated parsers to be as efficient in terms @fneiror memory usage as ad
hoc implementations programmed by hand, but they shouldast be equivalent in terms of
computational complexity.

The declarativity goal has been achieved by defining a sifgriguage to represent schemata,
practically equal to the formal notation normally used ia titerature, and using it as a starting point
to generate Java code, which can in turn be compiled. Thexedar system works in a similar fashion
to parser generators such as Yatd [or JavaCC 80Q].

The generality goal has been achieved by means of an extépsitechanism: since it would be
impossible to support by default all the different kinds bjert that could appear in schemata, we
allow the user to easily define and add new object types, wtachbe handled by the code generator
in the same way as the predefined ones.

Finally, the efficiency goal has been achieved by having gstesn perform a static analysis of input
schemata in order to determine the data structures andeéadeeded to provide constant-time access
to items, and generate code for these indexes.

3.3. Related work
Although some previous work has been done on systems anuidgeels that can be used to implement

parsing schemata for natural languages, the existinghaliges do not fulfill the features enumerated
in section3.2. The Dyna languag€l[l] can be used to implement some kinds of dynamic programs,

Copyright(© 2000 John Wiley & Sons, Ltd. Softw. Pract. Expe2000;00:1-6
Prepared usingpeauth.cls

S E A COMPILER FOR PARSING SCHEMATA 9
s

but its notation is not as close to the formal notation comisnosed to represent schemata as ours. The
DyALog system 8] can be used to compile and run tabular parsers for sevexadrgatical formalisms,
but the specifications are based on logical push-down ad#oarad can be complex and unnatural,
especially for purely bottom-up parsers which do not usdtederight strategy to process the input
string. None of these systems is specifically oriented tartipdementation of parsing schemata.

Shieber £7] introduces a technique to execute parsing schemata wittdaative parsing engine
programmed in Prolog. However, this requires the convaersiidtems and deduction steps to the Prolog
language. Moreover, if we want the implementations geedraiith this technique to be efficient, we
need to provide item indexing code by hand, so we have to alvetie abstraction level of schemata
and take implementation details into account. Withoutitiitexing system, the Prolog interpreter will
perform a large amount of CALL and REDO operations, distorthe results when working with large
grammars3, 9].

Basic parsing schemata can also be implemented in Datal@giaant of Prolog commonly used for
deductive databases. The subject of obtaining efficientementations of Datalog programs has been
studied in the literature?[l, 20]. However, the constraints imposed by Datalog disallow sarseful
extensions to parsing schemata, like feature structufecation, that can be used in our system.

3.4. System architecture

Our parsing schemata compiler is composed of several €iffesubsystems:

e The “sparser” (schema parser) subsystem reads input passinemata, parses them and
transforms them into an internal tree representation, lwhidl be the input to the code
generation step. This subsystem is a compiler generatduehlatvaCC parser generator.

e The “generator” (code generator) subsystem is the most leonpaurt of the schema compiler.
This subsystem takes the tree representation producedpays&r” as input, and uses it to
generate the Java classes implementing the algorithmibeddsy the schema. This subsystem
is divided into several parts, and each of them is used torgena part of the implementation:
deduction step execution, item management, indexing, etc.

e The “eparser” (element parser) subsystem guaranteesgénerality property discussed
previously by providing an extensibility mechanism whicdmndie used to compile schemata
with non-predefined elements. As explained above, parsingrsata have an open notation, so
any mathematical object could appear as part of an item.eftver, it would be impossible for
our system to recognize “a priori” any kind of item that coplatentially appear in an arbitrary
schema. The “eparser” subsystem allows the user to defirmvnikinds of notational elements
and use them in schemata, the use of Java’s dynamic classddadilities eliminating the need
for recompilation in order to add new element types.

Figure5 shows how these systems interact to transform a parsingsthénto an executable parser.
More details about each of the subsystems will be given iridlh@ving sections.

Copyright(© 2000 John Wiley & Sons, Ltd. Softw. Pract. Expe2000;00:1-6
Prepared usingpeauth.cls

10 C. GOMEZ-RODRGUEZ, J. VILARES, M.A. ALONSO SP E
&

Java code generation Compilation to executable Execution

.7 :SchemaFile

Parse schema file (sparser)

Parse elements (eparser)

:SchemaTree’
Generate code (generator)

Contains only
sentence-independent
items at this point

:Parser implementation
5 les)]

Commpi i :Parser implementation
java source files oneielGntizvac) executable bytecode)

Execute (java)

(Launch deductive engine (ready))

|_ Lltemset]

(Read sentenceH :Sentence |

(Launch deductive engine (parse)

:Item set (result

Figure 5. Activity diagram showing how the system can be used to compllexa@tute a parsing schema.

4. ARCHITECTURE OF THE GENERATED CODE

Before going into detail about the design of our code-gemeyaystem, we first need to think about
the design of the code it will have to generate. The struatfitkis code must be generic enough to be
applicable to any schema, but it must also allow us to inchatécular optimizations for each schema,
to enable us to achieve the efficiency goal.

A deductive parsing engine such as the one described by &hiref27] fulfills the first condition,
providing a generic means of implementing any parsing sehdmt it is not efficient unless we can
access items in constant time, and the way to achieve thiffésemht in each particular schema. The
idea of compiling parsing schemata allows us to generatensatspecific code to attain efficiency.

In particular, our compilation process proceeds accortbripe following principles:

e A class is generated for each deduction step. The classedethrction steps implement a
common interface with aappl y method which tries to apply the step to a given item. If the ste
is in fact applicable to the item, the method returns the iems$ obtained from the inference. In

Copyright(© 2000 John Wiley & Sons, Ltd. Softw. Pract. Expe2000;00:1-6
Prepared usingpeauth.cls

SP E A COMPILER FOR PARSING SCHEMATA 11
s

order to achieve this functionality, the method works akfes: first, it checks if the given item
matches any of the step’s antecedents. For every successfch found, the method searches
for combinations of previously-generated items in ordesdtisfy the rest of the antecedents.
Each combination of items satisfying all antecedents spiwads to an instantiation of the step
variables which is used to generate an item from the consgque

e Code is generated to read an input grammar and create andagifia deduction step class for
each possible set of values satisfying its side conditiBosexample, a distinct instance of the
Earley Predictor step will be created at runtime for eaclmgnar rule of the formB — v € P,
which is specified in the step’s side condition. Deducti@pshstances are lightweight objects,
so large grammars needing a large amount of them can be kandle

e The execution of deduction steps in the generated code islicaded by a deductive parsing
engine, which can be seen as an implementation of the dynamgramming approach that
underlies chart parsindLf]. Since this is a generic algorithm, the parsing engine alillays
be the same and we do not need to generate it. The engine vedesaribed by the following
pseudocode:

st eps set {deduction step instances};
itens set {initial itens};
agenda = list [initial itens];
For each deduction step with an enpty antecedent (s) in steps {
result = s.apply([]);
itens.add(result);
agenda. enqueue(resul t);
st eps. renove(s);

}
Whi | e agenda not enmpty {
curltem = agenda. renmoveFirst()
For each deduction step applicable to curltem (p) in steps {
result = p.apply(curlten);
itens. add(result);
agenda. enqueue(resul t);

}
}

return itens;

The algorithm works with the set of all items that have beenegated (either as initial
hypotheses or as a result of the application of deductiopsytend an agenda, implemented
as a queue, containing the items with which we have not yed tid trigger new deductions.
When the agenda is emptied, all possible items will have beeemted, and the presence or
absence of final items in the item set at this point indicatesther or not the input sentence
belongs to the language defined by the grammar.

e An |t enmHandl er class is generated to provide efficient access to items. class contains
indexing code specific to each schema, since the best chbicelexes will depend on the
particular features of each. AdditionallysaepHandl| er class is generated to provide efficient
access to deduction steps.

Copyright(© 2000 John Wiley & Sons, Ltd. Softw. Pract. Expe2000;00:1-6
Prepared usingpeauth.cls

12 C. GOMEZ-RODRGUEZ, J. VILARES, M.A. ALONSO SP E
&

Schema ::= [ElementDefinitionList] [OptionList]

{ StepName StepDescriptioh { @goalGoalDescription}
ElementDefinitionList ::=

@beginelements{ ElementDefinition} @endelements
ElementDefinition ::=element_definition
OptionList ::= { @beginoptions Option @end.options }
Option ::= @option key value
StepName ::5@step ID
StepDescription ::= Antecedent Separator Conditions Consequent
GoalDescription ::= Antecedent
Antecedent ::={ ItemDescription }
Separator :={ "-"}
Consequent ::= ItemDescription
IltemDescription ::= "[" ElementList "]”
ElementList ::= [ElementWrappdr, ElementWrappe}]
ElementWrapper ::= Element
Conditions ::= ElementList
Element ::= element

Figure 6. EBNF grammar for parsing schema files.

5. READING SCHEMATA

As we have explained above, the goal of the “sparser” subsyst reading an input file with the
description of a parsing schema and converting it to anrnaleree representation holding the data
that will be passed to the next subsystem, the code genefam®mnotation used to describe schemata
is very simple, and practically identical to the formal rimia commonly used to define them. More
concretely, the schema file format is the one described bEEBMF grammar in figuré.

As we can see, there are two symbols in the EBNF gramelemgenaindelementdefinitior) which
are undefined. This is because their definition will vary aelieg on the custom notational elements
defined by the user. Actually, from the point of view of thedsger”, the definition of these symbols is
a generic regular expression accepting any string withmautes or commas which cannot be confused
with other components of the schema file. When the “sparsat$fime of these strings in a position
where arelemenor elementdefinitionis expected, it will delegate its analysis to the “eparseotioie,
which deals with elements and element definitions. In theareder of this article, we will use the word
elemento refer to any object that can appear as part of an item.

The general structure of a parsing schema file consists gftonal section witlelement definitions
a second optional section containiogtions a series ofleduction stepsand a series ajoalsor final
items. An example of a schema file containing all these sesi®the following:

Copyright(© 2000 John Wiley & Sons, Ltd. Softw. Pract. Expe2000;00:1-6
Prepared usingpeauth.cls

SP E A COMPILER FOR PARSING SCHEMATA 13
s

@egi n_el enent s

el enent . Synbol : nonG oundFronst ri ng: [A- RT- Za- ho- z]

el ement . Synbol : groundFronttring: S

el enent. Rul eWapper:fronString:[A-Za-z \.]+>[AZa-z \.]~*

el ement . StringPosition: nonG oundFronString: [i-n]

el ement . StringPosition: groundFronttring:[0-9]+

el ement . SuntX Posi ti onsExpression:fronString:[0-9i-k\+\ -]+
el enent . Synbol Sequence: fronstring: ((al pha)| (beta)]| (gamm))
el ement . Speci al El enent: fronfString:\.

@nd_el enent s

@egi n_options
@ption outputltens allltens
@nd_options

@tep Earleylnitter
----------------------------- S -> al pha

@t ep Earl eyScanner
[A->alpha . abeta, i, |]
[a,j, j+1]

[A->alpha a. beta, i , j+1]
@tep Earl eyConpl eter

[A->alpha. Bbeta, i, j]
[B->gamma . , | , k]

[A->alpha B. beta, i , k]

@tep Earl eyPredictor
[A->alpha . Bbeta, i , j]

@oal [S->alpha. , 0, length]

As we can see, the element definition section is used to défngpes of element that will appear in
the schema’s deduction steps. Element definitions mapaegubressions to Java classes and methods.
For example, the element definition

el enent . StringPosi tion: nonG oundFronString: [i-n]

means that, whenever a lowercase letter in the ramgen is found in an item, an
instance of theStringPosition class must be created by invoking the method with

Copyright(© 2000 John Wiley & Sons, Ltd. Softw. Pract. Expe2000;00:1-6
Prepared usingpeauth.cls

14 C. GOMEZ-RODRGUEZ, J. VILARES, M.A. ALONSO SP E
&

signature public static StringPosition nonG oundFronString(String s) in
theel ement . StringPosi tion class. This job is done by the “eparser”, as mentioned earlie
Note that the reference to “non-ground” in the method namansehat the generated instance will
represent a variable. Constant (ground) string positiomgefined in the example by a different regular
expression[(0- 9] +).

In this case, element definitions are shown only for explanyapurposes: all the elements used
in the Earley schema are already predefined in the systemesdowot need to explicitly redefine
them. Explicit definitions are only needed to include newdkinf elements defined by the user, or for
overriding the default regular expressions associateld tvé predefined elements.

The options section is used to parametrize the resultinggpdn this example, we pass an option to
the system indicating that we want the generated parsertpuball items obtained for each sentence
(if no option were used, only the goal items would be outpptions can also be used to dynamically
change the type of agenda or deductive engine: for exammiesrfor-correcting parsing, we could
need an agenda implemented as a priority queue instead ahdastl queue, so that the items with
smaller error count could be used first. In order to use su@yganda, we would use a line

@pti on agendad ass agenda. Pri orityQueueAgenda

and define amgenda. Pri ori t yQueueAgenda class implementing a simpigenda interface.
The content of@pt i on lines is also accessible via a simple API from the generatele,cso that
user-defined classes such as this agenda can alg@psé on lines for further parametrization.

After these optional sections, we define the deduction stéjpsir schema in the simple notation
mentioned in sectioB.1, and then specify the format of the final items with one or n@eal lines.

If items matching a@oal specification are found by the generated parser, the papsoaess is
considered to have been successful and these final itemsitpig.o

In order to implement the “sparser” subsystem, the Java8UCcompiler compiler has been used.
This tool generates an LL(k) compiler from a grammar anratatith Java code. In this case the code
is simple, since it only has to build a tree which will be pakas input to the code generator. One of
the advantages of using an LL(k)-based compiler compileh sis JavaCC is that it provides helpful
error messages by default, thus making it easy to locatesytors in parsing schema files.

The tree produced by the “sparser” is nothing more than atdbical representation of the schema,
where the schema itself, deduction steps, antecedentsaretcepresented by tree nodes. The leaf
nodes in this tree are the components of items that we halesledémentsand are instantiated by the
“eparser”.

6. CODE GENERATION

The “generator” subsystem is the most complex and importantponent of the parsing schema
compiler. From a tree representation of a parsing schemergte by the “sparser” and “eparser”,
this component generates Java code for the classes imglam#re corresponding algorithm. For the
sake of simplicity, we will use a parsing schema correspugth the CYK [L8, 31] bottom-up parserin
some of the code generation examples. This schema is one siftiplest that we can find in practice,
having fewer steps and fewer kinds of element than Earlayd,can be defined as follow2q):

Copyright(© 2000 John Wiley & Sons, Ltd. Softw. Pract. Expe2000;00:1-6
Prepared usingpeauth.cls

SP E A COMPILER FOR PARSING SCHEMATA 15
&

@tep D1

[a, i, i+1]
--------------------- A->a
[A, i, i+1]

@tep D2

[B, i, j]

[C, ., k]
--------------------- A->BC
[A, i, k]

@oal [S,0,Iength]
6.1. Types of element

As we have seen in the previous section, the leaf nodes ofearectree contain the basic components
of items, called elements. Since we want our system to be tableork with all kinds of parsing
schemata, and any mathematical object could potentialheapin the representation of an item,
we have implemented an extensibility mechanism that allbvesuser to define custom elements
if the predefined element classes do not suffice to represpattizular schema. This extensibility
mechanism works by allowing the user to define regular espas to represent new kinds of element,
and associate them to classes. The problem is that the coeéeat@ should be able to handle these
user-defined elements and use them successfully to gersdfiatent code. In order to achieve this,
our system requires element classes to follow a simple aothtproviding the services needed by the
code generator. This basic contract comes from the idealtlyatlement appearing in a schema can be
classified into one of four basic types:

e Simple ElementsAtomic, unstructured elements which can be instantiatedobrin a given
moment. When simple elements are instantiated, they takegkesialue from a set of possible
values, which can be bounded or not. Values can be converteiéxing keys. Examples of
simple elements are grammar symbols, integers, stringiposj probabilities, the dot in Earley
items, etc.

In order to define a new simple element class, the user musemngmt aSi npl eEl enent
interface, providing a method to obtain a Java code reptasen of the element’s value, if it
has one. For example, the Java code representation of aprdleapresenting a string position
and holding the value 1 is the string “StringPosition.gmromValue(1)”, which calls a static
method returning an integer element with the valtie The method returning the Java code
representation for grammar symbols is as follows:

tUsing a static method such as this one instead of creating ainstance (“new StringPosition(1)") is an optimization. A
parser may use millions of items, each of them with several eltsnsa all the predefined element classes are programmed in
such a way that the generated code uses multiple referenttes $ame instances instead of multiple instances. Apart fnem t
memory saved with this optimization, it must also be noted tleat icomparison is one of the main performance bottlenecks in
generated parsers, and this optimization allows such cosgrerito be performed at the reference level, which is muchrfaste
than dereferencing the elements and comparing their values.

Copyright(© 2000 John Wiley & Sons, Ltd. Softw. Pract. Expe2000;00:1-6
Prepared usingpeauth.cls

16 C. GOMEZ-RODRGUEZ, J. VILARES, M.A. ALONSO SP E
&

public String getExpressionCode()

{
return "element.SymbolTable.instance ().
symbolFor{""+SymbolTable.instance (). getNankis)+"\")";

In addition to this method, simple element classes shoufgdement a method returning an
integer indexing key, so that the corresponding elemembeaised for item indexing.

e Expression Element§hese elements denote expressions which take simple deimeather
expressions as arguments. For example, i+1 is an expresigioent representing the addition
of two string positions. Feature structures and logic teames also represented by this kind
of element. When all simple elements in an expression araritiated to concrete values,
the expression will be treated as a simple element whose valobtained by applying the
operation it defines (for example, summation). For the caefeegator to be able to do this, a
Java expression must be provided as part of the expressorest type definition, so that, for
example, sums of string positions appearing in schematdeaonverted to Java integer sums
in the generated implementation. Expressions have beeériagaplement unification of feature
structures], left-corner relationships?3], etc.

When defining a class for a new expression, the user must ingplisainEx pr essi onEl enent
interface, providing a method to obtain a Java code reptasen of the expression from
the representation of its children (operands). For exaple method for sums of string
positions takes an array of strings as a parametex, (pps, - - ., 0p,]) and returns the string
“op1 + op2 + ... + op,”. Apart from this, the user must also provide a method retgmhe
return type of the expression: in this case, the cidssment . St ri ngPosi ti on. cl ass.

e Composite Element€omposite elements represent sequences of elements vemagh must
be finite and known. Composite elements are used to struitems: for instance, the Earley
item [A — «.Bf,1,j] is represented as a composite element with three componketfrst
being in turn a composite element representing a grammer rul
The interface for this kind of elemer@nposi t eEl enent , only requires the user to provide
methods returning the number of children (sub-elementa)aimposite, and to get tht child.

e Sequence Element$hese elements denote sequences of elements of any kina wéragth
is finite, but only becomes known when the sequence is inatedtto a concrete value. The
stringsa, 8 and~ appearing in the Earley schema are examples of sequencergkerbeing
able to represent symbol strings of any length.

The interfaceSequenceEl enent only requires the user to provide a method returning a
type for the elements in the sequence. For example, the @asssenting symbol sequences
has a method that always reture$ enent . Synbol . cl ass. It is possible to define
sequences holding elements of multiple types by returningiase generic type such as
el ement . Si npl eEl enent . cl ass.

Copyright(© 2000 John Wiley & Sons, Ltd. Softw. Pract. Expe2000;00:1-6
Prepared usingpeauth.cls

SP E A COMPILER FOR PARSING SCHEMATA 17
s

6.2. Deduction step classes

Each of the deduction steps in the schema, representé@bgp specifications in the input file,
produces a class implementing tBeduct i onSt ep interface. Goal specification@oal also
produce deduction step classes, as if they were steps wiithgke antecedent and no consequent,
since in this way the indexing and matching techniques usédd items matching antecedents can be
reused to find the goal items in an item set.

The main function of deduction step classes is to provide thodethat, given a particular item,
generates all the items that the step can deduce using &matas an antecedent, and previously
generated items for the rest of the antecedents. This turadity is provided by a

List applyTo (Object[] item)
method in theDeduct i onSt ep interface, which will be implemented by each concrete dédoc
step class created by the code generator.

6.3. Representation of items in the generated code

As can be seen in the signature of #ygpl y To method, items in the generated code are represented
as object arrays@j ect []). This may come as a surprise since, when we described tles typ
of element in sectior6.l, we mentioned that items were represented by instanceseotldss
Conposi t eEl enent .

The reason for this discrepancy is that the representafi@ements and items in the generated
code is not the same as that handled by the code generatoe. ¢ode generator, elements of schemata
are represented by a hierarchy with its base inBhenent class, and th€ompositedesign pattern
[12] is used to represent items as tree structures. This way deliog elements is elegant from an
object-oriented design standpoint, makes it easy for thetosadd custom element types and simplifies
system maintenance.

In the generated code we also need to work with elements ants,tbut priorities are different.
Generated code is a “black box” that does not need mainterianihie user (modifications in generated
parsers should be made by modifying the input schema andeegféng the code). Taking this into
account, it is reasonable to prioritize efficiency over alezp in the generated code. This is the reason
why, in the generated code, composite element structuoksaglitems are translated to object arrays,
whose components can be elements or other object arrays.nTdikes generated code somewhat
convoluted and hard to read, but more efficient, since tteyaapresentation of items saves indirection
levels and memory usage with respect to a more object-edespresentation. As an example, we need
32+ 35 bytes to represent the itejd, 0, 2] in the code generator, whefkis the object shell sizeand
Arrayli st s are used to implement composites. With the array repr@semtused in the generated
code, the same item takes up o+ S bytes. Since natural language parsers typically need te sto
hundreds of thousands of items, this difference in memoagess important, and the elimination of
one indirection level also affects parser runtimes.

#The object shell sizés the minimum object size in a Java Virtual Machine (JVM). Thaarete value o5 depends on the
particular JVM used to execute Java code, but is typicallyt8sin modern JVM’s.

Copyright(© 2000 John Wiley & Sons, Ltd. Softw. Pract. Expe2000;00:1-6
Prepared usingpeauth.cls

18 C. GOMEZ-RODRGUEZ, J. VILARES, M.A. ALONSO SP E
&

While composite elements are represented by arrays in therafed code, expression and sequence
elements have no particular representation: these elsraemtransformed into operations rather than
data structures. Expression elements appear in the gedecatle as Java expressions producing
a simple element result; and sequence elements will prodade to match zero or more simple
elements.

6.4. Visitors for code generation

The two most complex methods in a deduction step class armeotisructor and the aforementioned
app! yTo method. If a deduction step has a production rule as a sidditamm the constructor must
check if a rule passed as a parameter matches the conditidmitialize the corresponding variables.
Therefore, the constructor of the step

@tep D2

[B, i,]

[C, ., k]
--------------------- A->BC
[A, i, k]

will check whether the parameter is an array of length 3, aitdhlize the variablesA, B andC' in
the step to the concrete values found in the parameter. finerdf the initialization parameter is the
concrete rules — NP VP, the constructor will assigd = S, B = NP andC = VP.

On the other hand, theeppl y To method returns all the items which can be generated usingrthe
passed as a parameter as an antecedent, and previouslgtgdritms for the rest of the antecedents.
As an example, suppose that we have the instance of the ®tafedrwith the rules — NP VP,
and we receive the itefdV P, 0, 2] as a parameter. The operations needed to implemeaipthkey To
method are the following:

e Match the given item with the specificati¢R, i, j] where the value oB must beNP andsi, j
can take any value.

e If it matches, assign particular values to the varialilesxd j (in this case, the matching is
successful, and we assigr= 0 andj = 2).

e Search forll the items in the item set that are of the fof@ j, k] where the value of' is V P
and the value of is 2. That is, search for the items of the fofiiP, 2, 7].

e For each of these, generate a conclusion it€m, k| with the corresponding value &t

e Repeat all the steps for the other antecedent, i.e., maghiten item with the specification
[C, j,k] and then search for items verifyiri@, 4, j]. In our particular case, the itefi$, 0, 2]
does not match the second antecedent.

Putting it all together, in order to generate code for thestmctor andappl y To methods, we need
a way to obtain code for the following operations:

Copyright(© 2000 John Wiley & Sons, Ltd. Softw. Pract. Expe2000;00:1-6
Prepared usingpeauth.cls

SP E A COMPILER FOR PARSING SCHEMATA 19
s

e Match a given item with a specification. The specification roagne from an antecedent or a
side condition, and is known at schema compile time, whikitidam is only known at runtime.

e Search for all items matching a specification known at coenihe.

e Use a specification to initialize step variables to valu&siidrom an item.

e Generate a conclusion item from step attribute values.

The code for all these operations can be generated in a sinahaif we take into account that all of
them traverse an item and are directed by a specification.ae tsed the Visitor design pattefi?]
to structure this part of the code generator. Code gengraigitors traverse the parts of the schema
tree corresponding to item specifications. There is a diffevisitor for each basic operation in the
generated code (matching, assigning values, etc.) andwvésitir has a different behaviour for each
kind of node &i npl eEl enent , Expr essi onEl enment ...) in the specification. We also need to
keep track of which variables in specifications have a caaar@ue at each part of the code and which
are uninstantiated, so this information is kept by an esestructure which can be queried by the
visitor.

The visitors themselves are also stateful, since they kedp @or accessing parts of items as an
internal state. This is because some information genevated matching an element can be needed to
generate the matching code for subsequent elements. Tiibecaeen in this sample of generated
codé, which checks whether an item in the Earley algorithm canfotto a generic specification
[A — a.Bg,1,j] (where the variables are not yet instantiated and couldaake/alue):

/I structural check
if (((Object][])item). length '= 3)return result ;
if (item[0] instanceof Object[])

if (((Object[])item [0]). length< 3) return result ;

else
return result ; //matching failed
/I"matching” with trigger item
if (((Object[])item [O])[0] instanceof element.Symbol)/ class check
sp.A = (element.Symbol) ((Object[]) item [0])[O];
else
return result ; // matching failed
int spalphaindex = 1; // variable to read symbols from the sequence alpha
while (spalphaindex < ((Object[])item [0]). length
&& ((Object[])item [O])[sp-alphaindex] instanceof element. Symbol)

sp.alpha .add (((Object[]) item [0])[splphaindex]);
sp.alphaindex ++;

§The generated code is not shown literally. It has been siragliiy removing some optimizations in order to make the example

morecompactand-readable

Copyright(© 2000 John Wiley & Sons, Ltd. Softw. Pract. Expe2000;00:1-6
Prepared usingpeauth.cls

20 C. GOMEZ-RODRGUEZ, J. VILARES, M.A. ALONSO SP E
&

if (item[0] instanceof Object[])

if (((Object[])item [O]). length < 2+spalphaindex)
return result ; //matching failed
}
else
return result ; //matching failed
if (!((Object[])item[0])[0+ spalphaindex]. equals (Dot. getinstance ()))
return result ; //matching failed
if (((Object]])item[0])[1+ spalphaindex] instanceof element.Symbol)

{
}

else

sp.B = (element.Symbol) ((Object[]) item[0])[1+ sa@lphaindex];

return result ; //matching failed
int spbetaindex = 2+spalphaindex;
(...)

When the visitor that generates matching code visits theeseguelement node corresponding to
«a, it inserts the declaration for a new variallp_al pha_i ndex into the code. This variable is used
as a loop index when reading symbols in the sequencand its value at the end of the loop will
depend on the number of symbols that matcifior each particular item. This value must then be
used to access the subsequent elements: for example, mortEessB in [A — «.Bf, i, j] the code
((Object[])itenf0])[1+sp_al pha.i ndex] is used. A representation of the code being used
to access the item is stored in the visitor’s state so thatfdrmation can be kept between invocations.

6.5. Search specifications

In the previous section we mentioned that one of the operatiweappl y To method needs to perform
is to search for all the items matching a specification knotvooanpile time. While the rest of the
operations that we have mentioned work on a single item,dhe must access the item set. This
operation is not really implemented by the deduction staps#s, but in aht enHandl| er class that
provides efficient access to items by using indexes spéeltyfiganerated for each schema.

Thel t enHandl er class provides three services: adding an item to the iteimndetding it in the
corresponding indexes, checking whether a given item isgmteor not in the item set, and returning
all items verifying certain characteristics. All of thesetmods need indexing techniques in order to
work efficiently.

In order to call the third method, which is the one usedappl yTo to search for antecedent
items, we need a way of specifying constraints on items. Apkénand efficient way to do this is
by representing search constraints in the same way as itamsjsingnul | values to represent
unconstrained elements. Therefore, in our example wher€%K D2 step needed to search for items
of the form[V P, 2, 7], the deduction step class would pass the specificgtid? 2, null] to the item
handler class. Thet enHandl er will then return all items of this form by using its indexes.

Copyright(© 2000 John Wiley & Sons, Ltd. Softw. Pract. Expe2000;00:1-6
Prepared usingpeauth.cls

SP E A COMPILER FOR PARSING SCHEMATA 21
s

Object[] spskeletonSP.CYKMainStepQl1 =new Object[]{ sp..C, spi2, null };
List itemsl =
ItemHandler. instance (). getBySpecification (sheletonSP.CYKMainStepQl);

7. INDEXING

If we wish our generated parsers to achieve the efficiencyrgeationed in sectiof.2, access to items
and deduction steps must be efficient. As we have seen iné@ps section, when we execute a step
we often need to search the item set for all the items vegfgigiven specification. In order to maintain
the theoretical complexity of parsing schemata, we mustigeoconstant-time access to items. In this
case, each single deduction takes place in constant tirdeharworst-case complexity is bounded by
the maximum possible number of step executions: all conitylé@x the generated implementation is
inherent to the schema.

As an example, the theoretical complexity of the CYK parsafgprithm isO(n?), wheren is the
length of the input. This is because the most complex stepisraigorithm is

[A, i, k]

which can be executed on at m@3tn®) combinations of antecedents, since positigrisandk take
values betweefi andn and symbolsA, B, C' come from a finite set.

As we have seen, theppl yTo method that executes this step in the generated code makehes
item received as a parameter with the specificati®n, j] and then searches for all items in the item
set of the form[C, j, k| for fixed values ofC andj. If we can obtain a list of these items in constant
time, theappl yTo method will run inO(n)Y (since we have to traverse this list and generate a
conclusion for each of the items), and it will generéién) items. Since the total number of items
generated in a CYK parser 3(n?) (items have two indexes ranging fromnto n), this appl yTo
method will be invoked) (n?) times during the execution of the parser. Therefore, tra tamplexity
is O(n?) x O(n) = O(n?), matching the theoretical computational complexity of CHowever, if
we had no indexation and the search for items were sequethiedppl yTo method would run in
O(n?) (there areD(n?) items to search among) and the generated implementati€@f&rwould be
O(n%).

9In this reasoning about complexity, we are only taking intocamt the first part of theppl yTo method, which matches
the parameter item with the first specification and then searfdr items conforming to the second. However, if we apply an
analogous reasoning to the second part of the method (i.&imgpnatching to the second specification and searchingeo th
first), we obtain that the second part is af3¢n), so the method is globali® ().

Copyright(© 2000 John Wiley & Sons, Ltd. Softw. Pract. Expe2000;00:1-6
Prepared usingpeauth.cls

22 C. GOMEZ-RODRGUEZ, J. VILARES, M.A. ALONSO SP E
&

7.1. Static analysis and index descriptors

Generating indexes that can provide constant-time acodgms is not a trivial task, since a generic
indexing technique does not suffice: the elements by whicklveald index items in order to achieve
efficiency vary among schemata. For example, the CYK pargeduction steps perform two different
kinds of searches for items: searches for items of the f@fiy, ?] (where? can take any value) and
searches for items of the forfil3, ?, j]. Thus, in order to ensure that these searches access items in
constant time, we need at least two indexes: one by the filssacond components and another one
by the first and third. Different parsing schemata, as welliierent steps in the same schema, will
have different needs. Therefore, in order to generate indecode, we must take the distinct features

of each schema into account.

The decision of which indexes to create for a given schemakiest by performing a static analysis
of each deduction step in order to determine the kind of $earit needs to perform. This information
is known at schema compilation time and is gathered by ouesysluring deduction step code
generation, stored in data structures caiedrch descriptors-or example, when the code generator
produces the code for this search in the CYK parser:

Object[] spskeletonSP.CYKMainStepQ1l =newObject[]{ sp.-C, spi2, null };
List itemsl =
IltemHandler. instance (). getBySpecification (.sqeletonSP.CYKMainStepQ1);

the code-generating visitors, apart from outputting treeaespecification

new Cbject[] { sp_C, sp_i2, null }, also produce a tree structure of the fofm
Synbol , StringPosition , null]. This structure, called aearch descriptgrspecifies
the structure of the items that are searched for and theigusiand classes of elements which take
concrete values in the search specification.

Search descriptors from all the deduction steps in the isphema are gathered into a list, and
used to decide which indexes to create. It will be converignteate indexes by non-null components
of search descriptors that can be used for indexing (i.@ngghg to a class that provides a method
to obtain an indexing key, see sectiérl). The simplest way to do this is by creating an index for
every search descriptor, indexing by all components mgéiiese conditions. With this approach, the
presence of our search descripforSynbol , StringPosition , null] means that we
should generate an index on the first and second componeitésnsf, and the other search descriptor
obtained from the same step (whicH isSynbol , null , StringPosition])means that
we should generate an index on the first and third component.

The decisions that the system takes about the indexes isrneeatteate are encoded into objects
calledindex descriptorswhich are lists containing the positions of elements usedrfdexing and
the type of indexes that are going to be used. For exampleydexidescriptor for our first index in
this case could bp0: hash, 1: hash] , meaning that we are going to use the elements in positions 0
and 1 as keys for hash indexe3 he decision as to which particular data structures to osmélexes

IINote that items are trees, not lists, so in a general case #itiopoof an element cannot be denoted by a single integeitiétos
are represented by lists of integers: for example, when wgrkiith Earley items of the forfA — «.Bg, 1, j], we can have a

Copyright(© 2000 John Wiley & Sons, Ltd. Softw. Pract. Expe2000;00:1-6
Prepared usingpeauth.cls

SP E A COMPILER FOR PARSING SCHEMATA 23
s

(hashes, arrays...) can be configured as an option, eitheattigg a global default or by configuring it
for each particular element class.

7.2. Generation of indexing code

Once we have index descriptors for all the search indexes Weeed, we can proceed to generate
indexing code. This code is located in theentHandl er class which, as mentioned in sectiérb,
provides three services: finding all items verifying a gigpecification get By Speci fi cati on),
checking whether a given item exists in the sti(st s) and adding an item to the setdd).

The get BySpeci fi cati on service usessearch indexeswhich are obtained from index
descriptors obtained as described in the previous secflomexi st s service uses a different kind
of indexes calledxistence indexe3hese are obtained in the same way as search indexes, ut the
search descriptors come from a full consequent item insté&@m a search specification, and have
no null values. Thedd service must use both search indexes and existence indaxes every item
added to the set must be accessible to the other two services.

Although the functionality of each of the three servicedfiecent, theirimplementation can be done
in such a way that a significant part of the code is common tofahem, and we can take advantage
of this fact during code generation. In particular, we cascd®e the three methods with the following
high-level pseudocode:

method (item or specification)
{
test whether parameter conforms to search descriptor iagstcto index 1;
if it does
{ . .
access index 1 using parameter;
process obtained list ;
}
(...)
test whether parameter conforms to search descriptor iagstcto index d;
if it does
{ _ _
access index d using parameter;
process obtained list ;

Note that, although we mention search descriptors in thedmmsde, search descriptors are not
accessible from the code, they are only used to generateach Bf thed tests in the pseudocode
corresponds to a different series of conditional statestvat check if the parameter conforms to the

search descriptdr[nul | , nul |, nul |, Synbol , nul |], nul |, I nt El enent], and the corresponding index descriptor
for an index byB andj would be[[0, 3] : hash, [3] : hash] .

Copyright(© 2000 John Wiley & Sons, Ltd. Softw. Pract. Expe2000;00:1-6
Prepared usingpeauth.cls

24 C. GOMEZ-RODRGUEZ, J. VILARES, M.A. ALONSO SP E
&

structure expressed by a search descriptor, but they doseahe descriptor itself: its constraints are
directly compiled into code. Also note that, although thadiGons and bodies of thef statements are
expressed in an uniform way in the pseudocode, they areetliffén the code, since they are generated
from different search descriptors. This is the reason whirae expressed the pseudocode as a series
of conditional statements, and not as a loop.

The main conceptual difference between the three methotheisneaning of “process obtained
list”. In the case ofadd, processing the list means initializing it if it is null andding the parameter
item to it. In the case oéxi st s, it consists of checking if the list is empty. Finally, in toase of
get BySpeci fi cati on, the method will simply return the obtained list.

In reality, the parts appearing as common in the pseudocoal@lso slightly different, but the
differences are small enough to allow us to reuse most oféhemtor code.

The strategy for generating the code for these methods itasita the one used in step classes.
In this case, instead of traversing an element tree, wersawve search descriptor, generating code at
each node. We do not use the Visitor design pattern becaesetiaviour at each node depends on its
content, not its class.

A high level pseudocode for generating the code to test venetiparameter conforms to the search
descriptor is the following:

generatelndexingCheckCode (SearchDescriptorNode nddst, address , String objectName)
{
if (node is associated to elass)
objectName ="(Class)” + objectName;

add (address,objectName) to address map;

if (node is not associated to eass)

",

return ™; // null node => this part of items is not used in the indexing code

if (node associated to alass other than SequenceElement)
generate type check:
"(object in ObjectName) instanceof (class associated tdejio

if (node is associated talass SequenceElement)
{
if (operation = getBySpecification)/ parameter is a specification
generate type check:
"(object in ObjectName) instanceof SequenceElement”
if (operation = exists or add)/ parameter is a concrete item

Class cl = expectectlass for members of the sequence;
if objectName is of the form *{[i]”

{

generate loop:

Copyright(© 2000 John Wiley & Sons, Ltd. Softw. Pract. Expe2000;00:1-6
Prepared usingpeauth.cls

A COMPILER FOR PARSING SCHEMATA 25

SRE

"int newlndex = 0;
while (i+newindex< (x).length && (x)[i+newlndex] instanceof cl)
newlndex++;”

objectName = £)[i+newlndex];

}
}
}

if (node is associated to array)
{

generate length checks;

for i = 0..numChildren()—1

child = i+1th child of node;

address = add(address, i);

update objectName to traverse child;
doGenerateCode (child , address , objectName);
address = removelast(address);

}

}
¥

In this recursive methodyode holds a particular node in a search descriptor that we argusi
generate codaddr ess holds its address expressed as a list of integers, and thgshj ect Nane
stores the code that should be used to access the corresg@heinent in the generated code.

Apart from generating the checks needed to match an itememifgmtion to a search descriptor,
this method also introduces entries intoaitress mapas can be seen in the code. The address map is
used to convert positions in a search descriptor (whichistedf integers) to the string used to access
the corresponding parts of items and specifications in themgg¢ed code. For example, the following
address map is produced when executing this code on a sgaecifiction for items of the form

[A — «.Bg,1,j] in Earley’s algorithm:

Address Object name
[((ject[])item
[0] ((oject[])item[0]

[0,0] (A) ((oject[])((oject[])item[O])[0O]
[0,1] (@) ((Coject[])((Coject[])item[O])[1]

[0.2]() | ((Object[]) ((Object[])item[0])[1+ ndd]
[0.3] (B) | ((Obj ect[]) ((Cbject[])item[0])]2+ ndd]
[0.4] () | ((Obj ect[1)((Cbj ect[])iten) [0])[3+ nd4]
B0 ((Cbject[])item[1]
21() ((Chject(])item[2]

The information in the address map is then used to generieotdre to actually access the indexes.
The need for the address map arises because the values ofdexps declared as part of the checking
code (such asnd4 in this case) will be used by the index access code.

Copyright(© 2000 John Wiley & Sons, Ltd. Softw. Pract. Expe2000;00:1-6

Prepared usingpeauth.cls

26 C. GOMEZ-RODRGUEZ, J. VILARES, M.A. ALONSO SP E
&

Generation of the index access code has a quite complexrimepi@tion, as we support different
indexing data structures including arrays and collecti(msh as hash maps), which are accessed
through different Java syntax. We also must take into adcthiah indexes can be nested, but the result
of an intermediate query can bel | . For example, if we use hash indexing with two components of
items as keys, a hash map will be queried by using the first oo, and the result of the query will
be a second hash map that can be queried by using the first cemp®&ut the first query can also
returnnul | , and we have to check this condition to avoid trying the sdaprery on a null object and
causing an exception.

For space reasons, we will not go into further details onghis of the code generator. An example
of the code generated for hash indexes, and using the addegsshown before, is the following:

if ((partial0 =((HashMap)(exdex2).get(
((element. Symbol)((Object [)((Object[]) item)[0])[R] getHashKey())
)) = null)

{
result =((HashMap)partialO. get(

((element. Symbol)((Object [])((Object[]) item)[0])[dtd4]). getHashKey()
Dk

7.3. Indexing deduction steps

Apart from the indexes on items explained above, our systemiacludesdeduction step indexés
the generated parsers. These indexes are used to optimigetess of deciding which deduction step
instances can be applicable to a given item. Instead of lglitnging to apply every step and let the
pattern-matching processes discard those not matchingdicessed item, we use the index to obtain
a set of potentially applicable step instances, the rescfwdre known not to be useful) being directly
discarded.

As particular instances of deduction steps in a schema alusied to grammar rules, deduction
step indexes do not improve computational complexity wétspect to string length (which is already
optimized by item indexing), but they can improve complexiiith respect to grammar size. This is
usually an important factor for performance in natural laange applications, since itis common to use
grammars with thousands of rules.

Deduction step indexes are generated by taking into acstejpi/ariables which take a value during
the creation of a step instance, i.e. variables appearirgidenconditions. Since these variables will
have a concrete value for each step instance, they can baaiker instances in which they take a
value that will not allow matching with a given item.

Copyright(© 2000 John Wiley & Sons, Ltd. Softw. Pract. Expe2000;00:1-6
Prepared usingpeauth.cls

S E A COMPILER FOR PARSING SCHEMATA 27
s

8. EXPERIMENTAL RESULTS

As an example of the performance that can be achieved by tisersagenerated by our system in
real-life domains, we will show empirical results obtairtedgenerating implementations of several
different natural language parsing algorithms and appglyfrem to natural-language grammars.

8.1. Context-free grammars

We have used our system to generate implementations of flag@ar algorithms for context-free
grammars: CYK, Earley and Left-Cornezd). The schemata we have used describe recognizers, and
therefore their generated implementation only checkseseet for grammaticality by launching the
deductive engine and testing for the presence of final itartig item set. However, these schemata can
easily be modified to produce a parse forest as outfjutf[we want to use a probabilistic grammar
in order to modify the schema so that it produces the mostaghiebparse tree, this requires slight
modifications of the deductive engine, since it should omdyesand use the item with the highest
probability when several items differing only in their asisded probabilities are found.

The three algorithms have been tested with sentences froee ttifferent natural language
grammars: the English grammar from the Susanne cofijsthe Alvey grammar] (which is also
an English-language grammar) and the Deltra gram@@y jvhich generates a fragment of Dutch.
The Alvey and Deltra grammars were converted to plain cdstee grammars by removing their
arguments and feature structures.

The test sentences were randomly generated. As we arestg@gliea measuring and comparing the
performance of the parsers, not the coverage of the grammaardomly-generated sentences are a
good input in this case: by generating a large number ofr@iffesentences of a given length, parsing
them and averaging the resulting runtimes, we get a gooddfitlee performance of the parsers for
sentences of that length. Note that the generation procasriented to obtaining sentences of the
lengths we wished to study, rather than to simulating tharza of sentence lengths found in naturally-
occurring language use.

Tablel shows performance results (in terms of runtime and amouitémfs generated) for all these
algorithms and grammars. The tests were performed on a talaptop with an Intel 1500 MHz
Pentium M processor, 512 MB RAM, Sun Java Hotspot virtual mrae (version 1.4.2 01-b06) and
Windows XP.

The success of the index generation techniques describiiisiarticle is shown by the fact that
the empirical computational complexity of the three pagdsrbelow their worst-case complexity of
O(n?). Additionally, the results of the test can be used to compealgorithms and grammars in an
homogeneous environment, drawing the following conchsi@escribed in more detail idg]):

e By looking for functions f(n) such that the sequenc@¥n)/f(n) seem to converge to a
positive constantT((n) being the average time elapsed by a parser when processimgssif
lengthn) we can estimate computational complexities. This allog/$ousee that the empirical
computational complexity is lower in the case of the Susagnaenmar (where it is close to
linear) than in the other two grammars. The Susanne gramisampaovides the best parsing

Copyright(© 2000 John Wiley & Sons, Ltd. Softw. Pract. Expe2000;00:1-6
Prepared usingpeauth.cls

28 C. GOMEZ-RODRGUEZ, J. VILARES, M.A. ALONSO SP E
&

Table |. Performance measurements for generated parsers.

Grammar String Time Elapsed (s) Iltems Generated
length| CYK Earley LC CYK Earley LC
Susanne 2 0.000 1.450 0.03 28 14,670 330
4 0.004 1.488 0.06 59 20,945 617
8 0.018 4.127 0.45 341 51,536 2,962

16 0.050 13.162 0.61 1,439 137,128 7,641
32 0.072 17.913 0.92 1,938 217,467 9,628
64 0.172 35.026 2.30 4,513 394,862 23,393
128 0.557 95.397 4679 17,164 892,941 52,803

Alvey 2 0.000 0.042 0.00 61 1,660 273
4 0.002 0.112 0.01 251 3,063 455
8 0.010 0.363 0.05 915 7,983 1,636

16 0.098 1.502 0.42 4,766 18,639 6,233
32 0.789 9.690 3.998 33,335 66,716 39,099
64 5.025 44174 21.773 133,884 233,766 170,588
128 | 28.533 146.562 75.819 531,536 596,108 495,966

Deltra 2 0.000 0.084 0.15 1,290 1,847 1,161
4 0.012 0.208 0.35 2,783 3,957 2,566
8 0.052 0.583 0.83 6,645 9,137 6,072

16 0.204 2.498 2.577 20,791 28,369 22,354
32 0.718 6.834 6.095 57,689 68,890 55,658
64 2.838 31.958 29.853 207,745 282,393 261,649
128 | 14.532 157.172 143.73p 878,964 1,154,710 1,110,629

times in absolute terms. The probable reason for this ighieahlvey and Deltra grammars have
more ambiguity, since they are designed to be used withrieatauctures, and information has
been lost when these features were removed from them.

e CYK s the fastest algorithm in all cases, and generatesrfiams than the others.

e Left-corner is notably faster than Earley in all cases, hatdegree of improvement it provides
depends on each particular grammar. The Susanne grammas 8ebe particularly well suited
for left-corner parsing.

8.2. Tree-adjoining grammars

Although all the examples we have seen so far correspondniextefree parsing, our system is not
limited to working with context-free grammars, since pagsschemata can be used to represent parsers
for other grammar formalisms as well. Different formalisoas be added by defining element classes
for their rules using the extensibility mechanism expldiiresection6. L

In particular, we have also used our system to generaterpdisetree-adjoining grammar9.
A tree-adjoining grammar (TAG) includes a setedémentary treesf arbitrary depth which can be
combined by using theubstitutionand adjunctionoperations. The substitution operation is used to

Copyright(© 2000 John Wiley & Sons, Ltd. Softw. Pract. Expe2000;00:1-6
Prepared usingpeauth.cls

S E A COMPILER FOR PARSING SCHEMATA 29
s

Table Il. Runtimes obtained by applying different TAG parsers to s¢@entences from the XTAG distribution.

Runtime (s

Sentence Ear. no Egdr).

CYK VPP VPP Neder.
He was a cow 2.985 0.750 0.750 2.719
He loved himself 3.109 1.562 1.219 6.421
Go to your room 4.078 1.547 1.406 6.828
He is a real man 4.266 1.563 1.407 4.703
He was a real man 4.234 1.921 1.421 4.766
Who was at the door 4.485 1.813 1.562 7.782
He loved all cows 5.469 2.359 2.344 11.469
He called up her 7.828 4.906 3.563 15.532
He wanted to go to the city 10.047 4.422 4.016 18.969
That woman in the city contributed to this article 13.641 6.515 7.172 31.828
That people are not really amateurs at intelectual duelling 16.500 7.781 15.235 | 56.265
The index is intended to measure future economic performanct6.875 17.109 9.985 39.132
They expect him to cut costs throughout the organization 25.859 12.000 20.828 | 63.641
He will continue to place a huge burden on the city workers|| 54.578 | 35.829 57422 | 178.875
He could have been simply being a jerk 62.157 | 113.532 | 109.062 | 133.515
A few fast food outlets are giving it a try 269.187| 3122.860| 3315.359

substitute an elementary tree for a leaf node (which mustlbelled as gubstitution nodgin another
elementary tree. The adjunction operation allows us taimseuxiliary tree(an elementary tree with

a distinguished frontier node, called tfeot nodeand labelled with the same nonterminal as its root)
into another elementary tree.

The possibility of using elementary trees of arbitrary tiegmtd the adjunction operation provide an
extended domain of locality with respect to context-freengmars, and the set of languages which can
be recognized with TAG is a strict superset of context-fesgliages. This makes TAG an interesting
formalism for natural language parsing, since some phenarpeesent in natural languages cannot be
represented by context-free grammars.

We have used our compiler to generate implementations tordifferent parsers for tree-adjoining
grammars], 2]: a CYK-based algorithm, two extensions of Earley’s altfori with and without the
valid prefix property (VPP), and Nederhof’s parsing aldorit These implementations were tested
with a real-life, wide-coverage feature-based tree-adljgi grammar: the XTAG English grammar
[32].

The TAG parsing schemata can be written in a format readableub compiler in the same way
as the context-free parsing schemata seen in the previatisrse Although the main elements of
TAG's are elementary trees instead of productions, eachezitary tree may be expressed as a set of
productions which can be used as side conditions for demusteps. In order for the steps to be able
to check whether an adjunction or substitution operati@ll@ved at a given node, we define boolean
expressions that query the grammar for this informatiorthtncase of the XTAG grammar, we also
need to include feature structures inside items and addatidh operations to the deduction steps.

Table Il contains a summary of the execution times obtained by oweparfor some sample
sentences from the XTAG distribution. The runtimes are wwithe expected complexity bounds, but

Copyright(© 2000 John Wiley & Sons, Ltd. Softw. Pract. Expe2000;00:1-6
Prepared usingpeauth.cls

30 C. GOMEZ-RODRGUEZ, J. VILARES, M.A. ALONSO SP E
&

not as fast as the ones we would obtain if we used Sarkar’s Xdi&tbution parser written in CH].
This is not surprising, since our parsers have been gewebgta generic tool without knowledge of
the grammar, while the XTAG parser has been designed spbiffor optimal performance in this
particular grammar and uses additional information (suckree usage frequency data from several
corpora, seed?)).

However, our comparison allows us to draw conclusions atbith parsing algorithms are better
suited for the XTAG grammar. In this case there is not a sibglet algorithm in terms of execution
time, since the performance results depend on the size anpglexity of the sentences. Therefore, in
practical cases, we should take into account the most Ilkialy of sentences that will be passed to the
parser in order to select the best algorithm. For examplesamesee that the CYK parser has a poorer
performance than others for short sentences, but is fasterfger sentences.

More detailed information on these experiments with the ®TBnglish grammar and other tree-
adjoining grammars can be found ag] 13].

9. CONCLUSIONS AND FUTURE WORK

In this paper, we have described the design and implementafi a working compiler which is
able to automatically transform formal specifications ofspay algorithms (expressed as parsing
schemata) into efficient implementations of the correspangdarsers. The system’s source code can
be downloaded fromt t p: / / www. gr upocol e. or g/ sof t war e/ COVPAS/ .

Our compiler takes a simple representation of a parsingnsahes input and uses it to produce
optimized Java code for the parsing algorithm it describhs.system performs a static analysis of the
input schema in order to determine the adequate indexesadaductures that will provide constant-
time access to items, ensuring the efficiency of the gergiatplementation.

The ability to easily produce parsers from schemata is vesful for the design, analysis and
comparison of parsing algorithms, as it allows us to tesnthed check their results and performance
without having to implement them in a programming languagee implementations generated by
our system are efficient enough to be used as prototypesliifeedomains, so they provide a quick
means of evaluating several parsing algorithms in ordentbtfie best one for a particular application.
This is especially useful in practice, since different pagslgorithms can be better suited to different
grammars and domains.

The system is general enough to be applicable to differearhgratical formalisms, and has been
used to generate parsers for context-free grammars anddjeming grammars. In addition, we
provide an extensibility mechanism that allows the userdd mew kinds of elements to schemata
apart from the predefined ones. This same mechanism has beémouprovide predefined extensions
like those for feature structure unification and probatidiparsing.

Currently, we are using the system to automatically derokaust, error-correcting parsers from
standard parsers for context-free grammars and treerjogrammars. Additionally, we are working
on its application to projective and nonprojective depemgiebased parsing2P], since dependency
parsers can also be represented by parsing schemata, ebeatkst[15].

Copyright(© 2000 John Wiley & Sons, Ltd. Softw. Pract. Expe2000;00:1-6
Prepared usingpeauth.cls

http://www.grupocole.org/software/COMPAS/

SP E A COMPILER FOR PARSING SCHEMATA 31
s

REFERENCES

10.
. Eisner J, Goldlust E, Smith NA. Dyna: A declarative larggiéor implementing dynamic programs. Rmoceedings of

12.
13.
14.

15.

16.

17.
18.

19.

20.
21.
22.
23.

24.

. Alonso MA, Cabrero D, Clergerie EV, Vilares M. Tabularalghms for TAG parsing. IProc. of the 9th Conference of

the European Chapter of the Association for Computatiomadjistics (EACL'99)pages 150-157, 1999.

. Alonso MA, Clergerie EV, az VJ, Vilares M. Relating tabular parsing algorithms foiGLand TAG. InNew

Developments in Parsing Technologyges 157-184, Kluwer Academic Publishers, Dordrechteé®elsondon, 2004.

. Alonso MA, Diaz VJ. Variants of mixed parsing of TAG and TIG. Traitement Automatique des Langué4(3):41-65,

2003.

. Billot S, Lang B. The Structure of Shared Forest in Ambigu®arsing. InProc. of the 27th Annual Meeting of the

Association for Computational Linguistiggages 143-151, 1989.

. Carpenter B.The logic of typed feature structure€ambridge University Press, Cambridge/New York/Melbouii®9?2.
. Carroll J. Practical unification-based parsing of natural languadechnical report No. 314, University of Cambridge,

Computer Laboratory, England. PhD Thesis, 1993.

. Carroll J. Parsing. In Mitkov R (ed.J;he Oxford Handbook of Computational LinguisticOxford University Press,

Oxford, UK, 2003.

. Clergerie EV. DyALog: a tabular logic programming basedirmmment for NLP. InProc. of the 2nd International

Workshop on Constraint Solving and Language Proces®&agcelona, Spain, 2005.

. Diaz VJ, Alonso MA. Comparing Tabular Parsers for Tree AdjagnGrammars. IfProc. of Tabulation in Parsing and

Deduction (TAPD 2000)pages 91-100, Vigo, Spain, 2000.
Earley J. An efficient context-free parsing algorithBommunications of the ACM3(2):94-102, 1970.

the 42nd Annual Meeting of the Association for Computatibirguistics (ACL) pp. 218-221, Barcelona, 2004.
Gamma E, Helm R, Johnson R, VlissidesDesign patterns: Elements of reusable object orientedvsaét Addison-
Wesley, Reading, Massachusetts, 1995.

Gdmez-Rodiguez C, Alonso MA, Vilares M. Generating XTAG parsers frolgedraic specifications. IRroc. of TAG+8,
the Eighth International Workshop on Tree Adjoining Grammrad Related Formalism$ydney, Australia, 2006.
Gdomez-Rodiguez C, Alonso MA, Vilares M. On theoretical and practicafplexity of TAG parsers. IiFG 2006: The
11th conference on Formal Gramma&SLI Online Proceedings. Chapter 5, pp. 61-75, 2006.

Gdomez-Rodiguez C, Carroll J, Weir D. A Deductive Approach to DepengeRarsing. InProc. of The 46th Annual
Meeting of the Association for Computational Linguistiekiman Language Technologies (ACL'08:HLpp. 968-976,
Columbus, Ohio, USA, 2008.

Gdomez-Rodiguez C, Vilares J, Alonso MA. Compiling Declarative Spedifions of Parsing Algorithms. In R. Wagner,
R. Newell and G. Pernul (edsDatabase and Expert Systems Applicatjorsdume 4653 olecture Notes in Computer
Sciencepp. 529-538, Springer-Verlag, Berlin-Heidelberg-NewRk/®007.

Johnson SC. YACC: Yet another compiler compiler. Computérse Technical Report 32, AT&T Bell Laboratories,
Murray Hill, New Jersey, USA, 1975.

Kasami T. An efficient recognition and syntax-analysis algorithmdontext-free languagesScientific Report AFCRL-
65-758, Air Force Cambridge Research Lab, Bedford, MA, 1965.

Kay M. Algorithm schemata and data structures in syntactic preices Report CSL-80-12, Xerox PARC, Palo Alto,
Ca., 1980. Reprinted in: Grosz BJ et al. (EdR¢adings in Natural Language ProcessiiMprgan Kaufmann, Los Altos,
Ca., 1982.

Liu YA, Stoller SD. From Datalog rules to efficient progra with time and space guarantees.Phoc. of the 5th ACM
SIGPLAN Conference on Principles and Practice of Declamfrogrammingpp. 172—-183, 2003.

McAllester D. On the complexity analysis of static analsinProc. of the 6th International Static Analysis Symposium
volume 1694 of_ecture Notes in Computer Sciengp. 312—-329. Springer-Verlag, Berlin, 1999.

Nivre J. Inductive dependency parsing (Text, Speech and Languagendiegy) Springer-Verlag New York, Inc.,
Secaucus, NJ, USA. 2006.

Rosenkrantz DJ, Lewis || PM. Deterministic Left Cornerdftag. InConference Record of 1970 Eleventh Annual Meeting
on Switching and Automata Theopages 139-152, 1970.

Sarkar A. Practical experiments in parsing using treeiidig grammars. IrProc. of TAG+5, the Fifth International
Workshop on Tree Adjoining Grammar and Related Formaljgtasis, France, 2000.

. Sampson G. The Susanne corpus, release 3. 1994.
. Schoorl JJ, Belder SComputational linguistics at Delft: A status reppReport WTM/TT 90-09, 1990.
. Shieber SM, Schabes Y, Pereira FCN. Principles and impieren of deductive parsinglournal of Logic Programming

24(1-2):3-36, July-August 1995.

. Sikkel K. Parsing Schemata — A Framework for Specification and ArmbfsParsing Algorithms Texts in Theoretical

Computer Science — An EATCS Series. Springer-Verlag, Bétbidelberg/New York, 1997.

Copyright(© 2000 John Wiley & Sons, Ltd. Softw. Pract. Expe2000;00:1-6
Prepared usingpeauth.cls

32 C. GOMEZ-RODRGUEZ, J. VILARES, M.A. ALONSO SP E
&

29. Vijay-Shanker K, Joshi AK. Some Computational Propexfdsee Adjoining Grammars. 183rd Annual Meeting of the
Association for Computational Linguistigsages 82—93, 1985.

30. Viswanadha S. Java Compiler Compiler (JavaCC): The JagaRaeneratorht t ps: / /j avacc. dev. j ava. net/

31. Younger DH. Recognition and parsing of context-fregisyes in time:3. Information and Contrql10(2): 189-208,
1967.

32. XTAG Research GroupA lexicalized tree adjoining grammar for Englisfiechnical Report IRCS-01-03, IRCS, Univ. of
Pennsylvania, 2001.

Copyright(© 2000 John Wiley & Sons, Ltd. Softw. Pract. Expe2000;00:1-6
Prepared usingpeauth.cls

https://javacc.dev.java.net/

	1 INTRODUCTION
	2 PARSING SCHEMATA
	2.1 Languages and grammars
	2.2 Parsing schemata: an example

	3 SYSTEM OVERVIEW
	3.1 Motivation for our system
	3.2 Goals
	3.3 Related work
	3.4 System architecture

	4 ARCHITECTURE OF THE GENERATED CODE
	5 READING SCHEMATA
	6 CODE GENERATION
	6.1 Types of element
	6.2 Deduction step classes
	6.3 Representation of items in the generated code
	6.4 Visitors for code generation
	6.5 Search specifications

	7 INDEXING
	7.1 Static analysis and index descriptors
	7.2 Generation of indexing code
	7.3 Indexing deduction steps

	8 EXPERIMENTAL RESULTS
	8.1 Context-free grammars
	8.2 Tree-adjoining grammars

	9 CONCLUSIONS AND FUTURE WORK

